If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72^2+320^3=c^2
We move all terms to the left:
72^2+320^3-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+32773184=0
a = -1; b = 0; c = +32773184;
Δ = b2-4ac
Δ = 02-4·(-1)·32773184
Δ = 131092736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{131092736}=\sqrt{256*512081}=\sqrt{256}*\sqrt{512081}=16\sqrt{512081}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{512081}}{2*-1}=\frac{0-16\sqrt{512081}}{-2} =-\frac{16\sqrt{512081}}{-2} =-\frac{8\sqrt{512081}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{512081}}{2*-1}=\frac{0+16\sqrt{512081}}{-2} =\frac{16\sqrt{512081}}{-2} =\frac{8\sqrt{512081}}{-1} $
| 210^2+176^2=c^2 | | 229.84^2+461.37^2=c^2 | | 374^2+168^2=c^2 | | 90^2+216^2=c^2 | | 190^2+336^2=c^2 | | 80^2+192^2=c^2 | | 192^2+256^2=c^2 | | 84^2+80^2=c^2 | | 91^2+60^2=c^2 | | 180=80+(4x-32) | | 1/3x=6/8 | | 29-3m=20 | | -x^2=-12 | | H=4f=12 | | (434.031/x)-1=-0.09 | | 2(5)^2x+3=12 | | 200x=5x | | .46x=20x | | 16/35=20/x | | 16/35=20.5/x | | 90x+7=60x+10 | | 14*(2x+2)=12(2x+5) | | 6*6=5(5+x) | | 6x6=5(5+x) | | -x*12=-52 | | F(x)=2x+0.5 | | 20-2x=-1+0.5x | | 5z+0=45 | | -3/4b-2/5=3/b | | 9/16=64/x | | 2(a-3)+9=4a+7 | | 3^5x-2=27^2x |